CVE-2024-39756
A buffer overflow vulnerability exists in the adm.cgi rep_as_router() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger this vulnerability.
The versions below were either tested or verified to be vulnerable by Talos or confirmed to be vulnerable by the vendor.
Wavlink AC3000 M33A8.V5030.210505
Wavlink AC3000 - https://www.wavlink.com/en_us/product/WL-WN533A8.html
9.1 - CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H
CWE-120 - Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’)
The Wavlink AC3000 wireless router is predominately one of the most popular gigabit routers in the US, in part due to both its potential wireless and wired speed capabilities and extremely low price point (costing at the time of this writing ~$60 USD). Among the configuration options, it’s also able to act as a standalone wireless gateway, a basic network router, or a wireless repeater.
When interacting with and configuring the Wavlink AC3000 wifi router, as is typical of most wifi routers, an administrator logs in via some web portal and configures appropriate options via the HTTP interface. In the case of this particular router, and in another somewhat common execution pattern, these HTML pages can invoke .cgi binaries due to how the lighttpd server is configured. Since all of these .shtml and .cgi files are located in the web root, anyone with network access to the device doesn’t actually need to log in to the device to interact with these .cgi files, and it usually is the responsibility of the .cgi binary to check if the authentication is completed successfully. On this device, one will see a check_valid_user()
function in each individual .cgi binary which will check the session
cookie of the HTTP request to see if it’s coming from a validly logged in user.
Assuming that we’ve passed this check in the adm.cgi
binary, we then run into a set of functions that we can call based off of what we pass for the page=
parameter in our HTTP POST request. Of the available commands, we focus on the following:
004018a0 else if (strcmp(webget_page, "wzdrepeater") == 0)
00401c9c set_wzdrepeater(contlen_buf)
If we provide page=wzdrepeater
, we enter the set_wzdrepeater
function and our provided POST data is further parsed therein:
0040ed2c int32_t set_wzdrepeater(int32_t arg1)
0040ed7c int32_t $v0_1 = strdup(web_get("rep_type", arg1, 0))
0040eda4 if (access("/tmp/web_log", 0) == 0)
0040ee68 int32_t $v0_8 = fopen("/dev/console", &data_415758)
0040ee74 if ($v0_8 != 0)
0040eea4 fprintf($v0_8, "%s:%s:%d:rep_type = %s \n\n", "adm.c", "set_wzdrepeater", 0xc12, $v0_1, 0x439d20)
0040eebc fclose($v0_8)
0040edb8 int32_t $v0_3 = nvram_bufget(0, "ModelType")
0040eddc nvram_bufset(0, "IEEE80211H", "1")
0040ee00 if (strcmp($v0_1, "1") == 0)
0040eee8 return rep_as_bridge(arg1) __tailcall
0040ee1c if (strcmp($v0_3, "Mesh") == 0)
0040ee54 return rep_as_routerMesh(arg1) __tailcall
0040ee38 return rep_as_router(arg1) __tailcall
This function only serves to check our provided rep_type
POST parameter [1] and redirect code flow to one of three subfunctions. Assuming that the rep_type
is not “1” or “Mesh” , then we enter the rep_as_router
function:
00404ab0 int32_t rep_as_router(int32_t arg1)
00404af8 int32_t $v0 = nvram_bufget(0, "TouchLinkEn")
00404b14 int32_t $v0_1 = nvram_bufget(0, "Model")
00404b30 int32_t $v0_2 = nvram_bufget(0, "Brand")
00404b4c int32_t $v0_3 = nvram_bufget(0, "CountryCode")
// [...]
00404ea0 int32_t sprintf_vuln = strdup(web_get("wl_rep_ssid2g", arg1, 0)) //[1]
// [...]
00404f80 strdup(web_get("hostname", arg1, 0))
00404fb4 int32_t $v0_21 = strdup(web_get("static_en", arg1, 0))
00404fec int32_t sprintf_vuln_11 = strdup(web_get("INPUTTYPE", arg1, 0))
00405024 int32_t ModelType = strdup(web_get("ModelType", arg1, 0)) //[2]
// [...]
00405394 if (strcmp(ModelType, "AP") == 0) // [3]
00405b64 nvram_bufset(0, "SSID1", sprintf_vuln_8)
00405b80 nvram_bufset(1, "SSID1", sprintf_vuln_9)
00405b9c nvram_bufset(2, "SSID1", sprintf_vuln)
00405bc4 if (strcmp($v0, "1") == 0)
00405bd8 sprintf(&var_a0, "%s_Touch", sprintf_vuln)
00405bf4 nvram_bufset(2, "SSID3", &var_a0)
At [1], the binary copies our wl_rep_ssid2g
POST parameter to the heap and, assuming our “ModelType” [2] variable is equal to “AP” [3] then our wl_rep_ssid2g
buffer is copied to the stack at [3]. Since there’s no length checking on our input buffer, we can easily provide a buffer longer than 0xa0 bytes, which will overwrite the return address of this function and quickly result in arbitrary code execution.
Thread 2.1 "adm.cgi" hit Breakpoint 5, 0x00405bd8 in rep_as_router ()
(gdb) x/1s $a1
0x410000 <set_wan+3112>: "A"
(gdb) x/1s $a2
0xa6c158: "\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177\bp\377\177", 'A' <repeats 16 times>
(gdb) c
Continuing.
[Detaching after fork from child process 12402]
Thread 2.1 "adm.cgi" received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) info reg
zero at v0 v1 a0 a1 a2 a3
R0 00000000 00000000 00000000 ffffffff 00000003 7f84e8c4 00000000 00000000
t0 t1 t2 t3 t4 t5 t6 t7
R8 00000000 00000000 00000000 00000000 00000001 0002c600 0002c6b4 ffffffff
s0 s1 s2 s3 s4 s5 s6 s7
R16 7fff7008 7fff7008 7fff7008 7fff7008 7fff7008 7fff7008 41414141 41414141
t8 t9 k0 k1 gp sp s8 ra
R24 00000000 775bd450 00000010 00000000 7765a490 7f84ea28 41414141 41414141
status lo hi badvaddr cause pc
0100fc13 00000000 00000000 41414140 50800008 41414141
fcsr fir hi1 lo1 hi2 lo2 hi3 lo3
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
dspctl restart
00000000 00000000
2024-07-25 - Initial Vendor Contact
2024-07-29 - Requesting reply from vendor
2024-07-30 - Vendor confirms receipt
2024-07-30 - Vendor Disclosure
2024-07-30 - Vendor confirms receipt
2024-09-02 - Status update request sent
2024-10-15 - Status update request. Upcoming expiration date announced.
2024-10-22 - Vendor replies product has been discontinued, but patches are being worked on
2024-11-04 - Status update request for patch release dates
2024-11-12 TALOS advisory release date announced
2025-01-14 - Public Release
Discovered by Lilith >_> of Cisco Talos.